102.18 - Zirconium Base Alloys (chip form)

PLEASE NOTE: The tables are presented to facilitate comparisons among a family of materials to help customers select the best SRM for their needs. For specific values and uncertainties, the certificate is the only official source.

		Concentration are expressed as mass fraction, in % (unless noted by an asterisk * for mg/kg).														
SRM Description	Unit of Issue	Aluminum (Al)	Antimony (Sb)	Arsenic (As)	Boron (B)	Cadmium (Cd)	Carbon (C)	Chlorine (Cl)	Chromium (Cr)	Cobalt (Co)	Copper (Cu)	Fluorine (F)	Gallium (Ga)	Hafnium (Hf)	Hydrogen (H)	Iron (Fe)
360b Zirconium (Sn-Fe-Cr) Alloy	100 g	57*	(1*)	(7*)	0.191*	(<1*)	109*	(<1*)	1043*	0.97*	12.5*	(<10*)	(<1*)	78.5*	16.01*	2138*

Certified values are normal fontReference values are italicizedValues in parentheses are for information only

102.18 - Zirconium Base Alloys (chip form)

PLEASE NOTE: The tables are presented to facilitate comparisons among a family of materials to help customers select the best SRM for their needs. For specific values and uncertainties, the certificate is the only official source.

		Concentration are expressed as mass fraction, in % (unless noted by an asterisk * for mg/kg).														
SRM Description	Unit of Issue	Lead (Pb)	Magnesium (Mg)	Manganese (Mn)	Molybdenum (Mo)	Nickel (Ni)	Niobium (Nb)	Nitrogen (N)	Oxygen (O)	Phosphorus (P)	Silicon (Si)	Sulfur (S)	Tantalum (Ta)	Tin (Sn)	Titanium (Ti)	Tungsten (W)
360b Zirconium (Sn-Fe-Cr) Alloy	100 g	(<5*)	(<1*)	9.2*	(<25*)	22.5*	(<50*)	45*	(1430*)	8.7*	80*	(30*)	(<100*)	1.555	15.5*	(<50*)

<sup>Certified values are normal font
Reference values are italicized
Values in parentheses are for information only</sup>